Urban Logistics Innovation Day

26 September 2023, Brussels

Break-out Session I B:
Consumer engagement
& Sustainability of
Urban Freight

Alliance for Logistics Innovation through Collaboration in Europe

#LEADFinalConference #UrbanLogisticsInnovationDay

Sustainability score of urban freight logistic solutions: The STAR Logistic Methodology

Jose Manuel Vassallo Professor of Transport Universidad Politécnia de Madrid

26th September 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861598. LEAD is a project under the CIVITAS Initiative. Read more - civitas eu

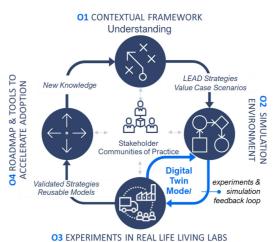
BACKGROUND

Boom of on-demand logistics → stress last-mile delivery systems

- Customer: demand of customised products
- Marketplaces: provides instant delivery
- Cities: possible negative consequences

Growing interest to make last-mile logistics more sustainable

Sustainability in last-mile logistics = environmental
 impact + economic growth +societal goals

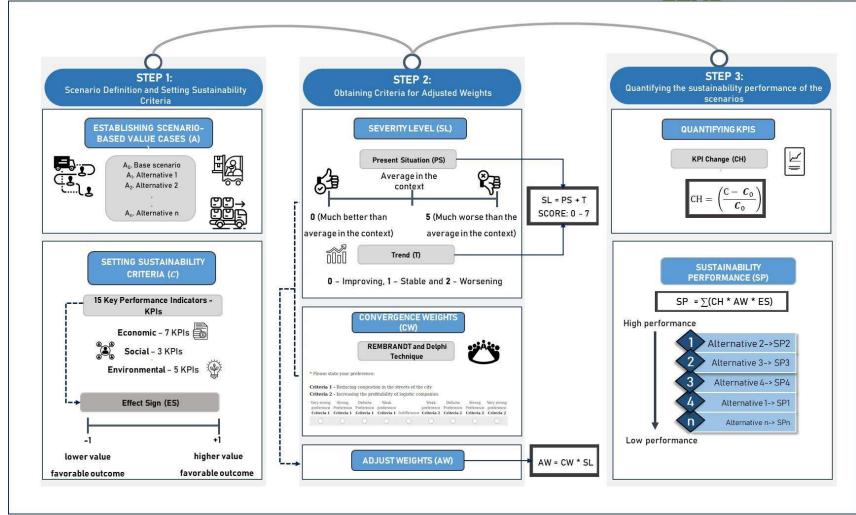

LEAD PROJECT

- Digital Twins for urban logistics services in 6 cities
- Demonstrated strategies by combining several measures (shared, connected, low-emission, etc.)
- Guidance on decision-making regarding on-demand logistics operations

Adaptation of digital twin to intervention area context with city data – Logistics Solutions

Multi-Criteria Evaluation Methods → STAR
Logistics Methodology (by UPM)

- Based upon sustainability KPIs (economic, environmental and social)
- Producing a sustainability performance rating
- Weights are estimated depending on both:
 - expert stakeholders' preferences
 - context of the urban area


What strategies should policy-makers prioritize based on sustainability targets?

How sustainable are the proposed last-mile solutions?

STEP 1:

Scenario Definition and Setting Sustainability Criteria

ESTABLISHING SCENARIO-BASED VALUE CASES (A)

- A₀. Base scenario
- A₁ Alternative 1
- A₂. Alternative 2
- •
- •
- A_n. Alternative n

SETTING SUSTAINABILITY CRITERIA (C)

15 Key Performance Indicators - KPIs

Economic - 7 KPIs

Social - 3 KPIs

Environmental - 5 KPIs

Effect Sign (ES)

-1 lower value favorable outcome

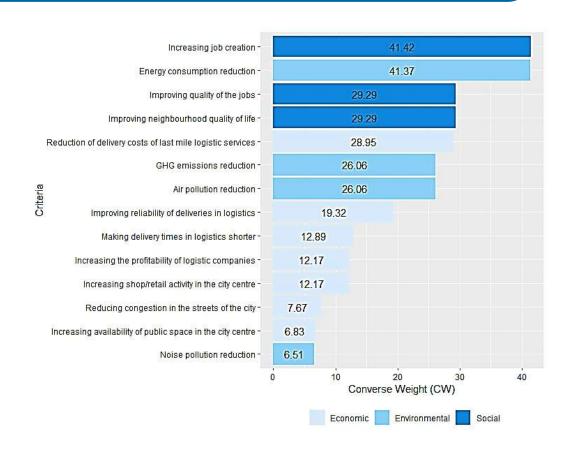
higher value favorable outcome

COMPONENT	NAME	UNIT	ES ^A				
Social	Job Creation	Employee	+1				
Social	Quality of the jobs	Value between 1 to 5	+1				
Social	Neighbour quality of life	Value between 1 to 5	+1				
Environmental	Energy consumption	MJ/delivery	-1				
Environmental	GHG emissions	gC02e/delivery	-1				
Environmental	NOx emissions	gN02e/delivery	-1				
Environmental	PM emissions	gPM/delivery	-1				
Environmental	Noise pollution	dBA*h/day	-1				
Economic	Average delivery cost of the business model	€/delivery	-1				
Economic	Congestion	%	-1				
Economic	Urban storage & parking space	Square meters	-1				
Economic	Financial Internal Rate of Return	%	+1				
Economic	Shop retail benefits	Value between 1 to 5	+1				
Economic	Delivery time	minutes/deliver y	-1				
Economic	Delivery reliability within the time windows	%	+1				
^a (+1) More is better, (-1) Less is better							

STEP 2: Obtaining Criteria for Adjusted Weights

CONVERGENCE WEIGHTS (CW)

REMBRANDT and Delphi Technique

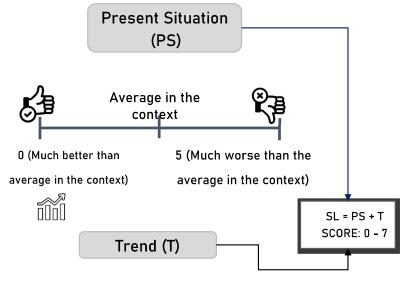


* Please state your preference:

Criteria 1 - Energy consumption reduction
Criteria 2 - GHG emissions reduction

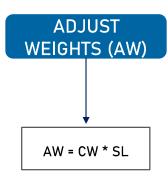
	Preference	Definite Preference Criteria 1		Indifference	preference	Preference	Preference	Very strong preference Criteria 2
0	0	0	0	0	0	0	0	0

Survey Data available in Zenodo 10.5281/zenodo.7695814



STEP 2: Obtaining Criteria for Adjusted Weights

0 - Improving, 1 - Stable and 2 - Worsening


CRITERIA		MADRID		THE HAGUE		LYON		BUDAPEST		0SL0		PORTO	
		Т	PS	Т	PS	Т	PS	Т	PS	Т	PS	Т	
Job Creation	5	0	1	0	3	0	1	1	1	1	2	1	
Quality of the Jobs	5	1	1	1	2	2	2	2	1	1	3	1	
Neighbours' Quality of Life	3	2	1	0	1	0	3	2	1	2	1	1	
Energy consumption	5	0	3	0	5	0	3	1	1	0	5	0	
GHG emissions	3	0	3	0	0	0	3	0	3	0	3	0	
NOx emissions	2	0	5	0	2	0	3	1	3	0	3	1	
PM emissions	1	1	1	0	3	0	3	0	1	0	1	1	
Noise pollution	1	0	4	2	4	0	4	2	5	1	1	2	
Average delivery cost of the business model	3	1	3	0	3	2	4	2	3	2	3	2	
Congestion	1	1	4	1	5	1	5	0	2	1	2	0	
Urban storage & parking space	4	1	4	0	3	0	4	0	4	2	4	2	
Financial Internal Rate of Return (FIRR)	2	2	2	0	4	0	3	0	2	0	2	1	
Shop retail benefits	4	2	4	0	4	0	1	0	3	0	4	0	
Delivery time	3	0	3	0	3	0	3	0	3	1	3	1	
Delivery reliability within the time windows	3	1	3	2	3	1	3	2	3	1	3	0	

STEP 2: Obtaining Criteria for Adjusted Weights

Minimum \rightarrow 6.5 Maximum \rightarrow 207.1

CRITERIA	MADRID	THE HAGUE	LYON	BUDAPEST	0SL0	PORTO
Job Creation	207.1	41.4	124.3	82.8	82.8	124.2
Quality of the Jobs	175.7	58.6	117.2	117.2	58.6	117.1
Neighbourhood Quality of Life	146.5	29.3	29.3	146.5	87.9	58.6
Energy consumption	206.9	124.1	206.8	165.5	41.4	206.8
GHG emissions	78.2	78.2	78.2	78.2	78.2	78.2
N0x emissions	52.1	130.3	52.1	104.2	78.2	104.2
PM emissions	52.1	26.1	78.2	78.2	26.1	52.2
Noise pollution	6.5	39.1	26.0	39.1	39.1	19.5
Average delivery cost of the business model	115.8	86.8	144.8	173.7	144.8	144.7
Congestion	15.3	38.3	46.0	38.3	23.0	15.3
Urban storage & parking space	34.1	27.3	20.5	27.3	41.0	41.0
Financial Internal Rate of Return (FIRR)	48.7	24.3	48.7	36.5	24.3	36.5
Shop retail benefits	73.0	48.7	48.7	12.2	36.5	48.7
Delivery time	38.7	38.7	38.7	38.7	51.6	51.6
Delivery reliability within the time windows	77.3	96.6	77.3	96.6	77.3	58.0

STEP 3: Quantifying the sustainability performance of the scenarios

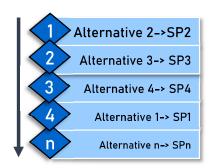
QUANTIFYING KPIs

KPI Change (CH)

Change compared with the base Scenario

$$CH = \left(\frac{C - \boldsymbol{C}_0}{\boldsymbol{C}_0}\right)$$

Data Sources


- Living Labs Digital Twins
- Logistic Operator Data
- Survey base

SUSTAINABILITY PERFORMANCE (SP)

$$SP = \sum (CH * AW * ES)$$

Ranking

From more Sustainability Performance to Less Sustainability Performance

SUSTAINABLE PERFORMANCE

LIVING LAB	SCENARIO	SUSTAINABLE PERFORMANCE RATING
	B2C: BAU with E-van	433.736
NA .1 * .1	B2C: Hybrid van + UCC + E-scooter	492.029
Madrid	B2C: E-van + UCC + E-scooter	529.382
	B2C: Big E-van + UCC + E-scooter	555.566
	B2C: Crowdshipping	258.156
The Hague	B2C: Parcel Lockers	151.855
	B2C: Parcel Lockers (bikes) + Crowdshipping	352.536
	B2C: 3 UCCs + cargo-bikes today's demand of parcels	85.758
Lyon	B2C: BAU with 2030 demand of parcels	112.792
	B2C: UCC scenario with 2030 demand of parcels B2C	168.051
	B2B: Minihub (LNG vehicle) + permanent warehouse 24h/day	616.441
Budapest	B2B: Minihub (e-vehicle 16t) + continuous warehouse (7 am to 12 pm)	633.230
Duuapesi	B2B: Minihub (LNG vehicle) + 24h transshipment point	619.173
	B2B: Minihub (e-van) + transhipment point (7 am to 12 pm)	635.962
	B2C: E-vans	248.421
Oslo	B2C: E-vans + microhub	259.305
	B2C: E-vans + microhub + Crodwshipper	289.884
	B2B: 25% e-vehicles	114.133
Porto	B2B: 50% e-vehicles	186.284
	B2B: 75% e-vehicles	288.808

CONCLUSIONS

- All the solutions of the living labs improve sustainability
- The results vary quite a lot depending on the context
- Discussing with stakeholders helps acquiring knowledge about LML solutions
- Digital Twins for synchronous last-mile are helpful to provide KPIs
- Policymakers can STAR to prioritize LML solutions

José Manuel Vassallo josemanuel.vassallo @upm.es

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861598. LEAD is a project under the CIVITAS Initiative. Read more - civitas.eu