Urban Logistics Innovation Day 26 September 2023, Brussels Break-out Session I B: Consumer engagement & Sustainability of Urban Freight Alliance for Logistics Innovation through Collaboration in Europe #LEADFinalConference #UrbanLogisticsInnovationDay # Sustainability score of urban freight logistic solutions: The STAR Logistic Methodology Jose Manuel Vassallo Professor of Transport Universidad Politécnia de Madrid 26th September 2023 This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861598. LEAD is a project under the CIVITAS Initiative. Read more - civitas eu ## **BACKGROUND** ## Boom of on-demand logistics → stress last-mile delivery systems - Customer: demand of customised products - Marketplaces: provides instant delivery - Cities: possible negative consequences # Growing interest to make last-mile logistics more sustainable Sustainability in last-mile logistics = environmental impact + economic growth +societal goals ## LEAD PROJECT - Digital Twins for urban logistics services in 6 cities - Demonstrated strategies by combining several measures (shared, connected, low-emission, etc.) - Guidance on decision-making regarding on-demand logistics operations Adaptation of digital twin to intervention area context with city data – Logistics Solutions Multi-Criteria Evaluation Methods → STAR Logistics Methodology (by UPM) - Based upon sustainability KPIs (economic, environmental and social) - Producing a sustainability performance rating - Weights are estimated depending on both: - expert stakeholders' preferences - context of the urban area What strategies should policy-makers prioritize based on sustainability targets? How sustainable are the proposed last-mile solutions? #### STEP 1: Scenario Definition and Setting Sustainability Criteria #### ESTABLISHING SCENARIO-BASED VALUE CASES (A) - A₀. Base scenario - A₁ Alternative 1 - A₂. Alternative 2 - • - • - A_n. Alternative n # SETTING SUSTAINABILITY CRITERIA (C) 15 Key Performance Indicators - KPIs Economic - 7 KPIs Social - 3 KPIs Environmental - 5 KPIs Effect Sign (ES) -1 lower value favorable outcome higher value favorable outcome | COMPONENT | NAME | UNIT | ES ^A | | | | | |---|--|-------------------------|-----------------|--|--|--|--| | Social | Job Creation | Employee | +1 | | | | | | Social | Quality of the jobs | Value between
1 to 5 | +1 | | | | | | Social | Neighbour quality of life | Value between
1 to 5 | +1 | | | | | | Environmental | Energy consumption | MJ/delivery | -1 | | | | | | Environmental | GHG emissions | gC02e/delivery | -1 | | | | | | Environmental | NOx emissions | gN02e/delivery | -1 | | | | | | Environmental | PM emissions | gPM/delivery | -1 | | | | | | Environmental | Noise pollution | dBA*h/day | -1 | | | | | | Economic | Average delivery cost of the business model | €/delivery | -1 | | | | | | Economic | Congestion | % | -1 | | | | | | Economic | Urban storage & parking space | Square meters | -1 | | | | | | Economic | Financial Internal Rate of Return | % | +1 | | | | | | Economic | Shop retail benefits | Value between
1 to 5 | +1 | | | | | | Economic | Delivery time | minutes/deliver
y | -1 | | | | | | Economic | Delivery reliability within the time windows | % | +1 | | | | | | ^a (+1) More is better, (-1) Less is better | | | | | | | | # STEP 2: Obtaining Criteria for Adjusted Weights # CONVERGENCE WEIGHTS (CW) REMBRANDT and Delphi Technique * Please state your preference: Criteria 1 - Energy consumption reduction Criteria 2 - GHG emissions reduction | | Preference | Definite
Preference
Criteria 1 | | Indifference | preference | Preference | Preference | Very strong
preference
Criteria 2 | |---|------------|--------------------------------------|---|--------------|------------|------------|------------|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Survey Data available in Zenodo 10.5281/zenodo.7695814 # STEP 2: Obtaining Criteria for Adjusted Weights 0 - Improving, 1 - Stable and 2 - Worsening | CRITERIA | | MADRID | | THE
HAGUE | | LYON | | BUDAPEST | | 0SL0 | | PORTO | | |--|---|--------|----|--------------|----|------|----|----------|----|------|----|-------|--| | | | Т | PS | Т | | | Job Creation | 5 | 0 | 1 | 0 | 3 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | | | Quality of the Jobs | 5 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 1 | | | Neighbours' Quality of Life | 3 | 2 | 1 | 0 | 1 | 0 | 3 | 2 | 1 | 2 | 1 | 1 | | | Energy consumption | 5 | 0 | 3 | 0 | 5 | 0 | 3 | 1 | 1 | 0 | 5 | 0 | | | GHG emissions | 3 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | | | NOx emissions | 2 | 0 | 5 | 0 | 2 | 0 | 3 | 1 | 3 | 0 | 3 | 1 | | | PM emissions | 1 | 1 | 1 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 1 | | | Noise pollution | 1 | 0 | 4 | 2 | 4 | 0 | 4 | 2 | 5 | 1 | 1 | 2 | | | Average delivery cost of the business model | 3 | 1 | 3 | 0 | 3 | 2 | 4 | 2 | 3 | 2 | 3 | 2 | | | Congestion | 1 | 1 | 4 | 1 | 5 | 1 | 5 | 0 | 2 | 1 | 2 | 0 | | | Urban storage & parking space | 4 | 1 | 4 | 0 | 3 | 0 | 4 | 0 | 4 | 2 | 4 | 2 | | | Financial Internal Rate of Return (FIRR) | 2 | 2 | 2 | 0 | 4 | 0 | 3 | 0 | 2 | 0 | 2 | 1 | | | Shop retail benefits | 4 | 2 | 4 | 0 | 4 | 0 | 1 | 0 | 3 | 0 | 4 | 0 | | | Delivery time | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 1 | 3 | 1 | | | Delivery reliability within the time windows | 3 | 1 | 3 | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 3 | 0 | | # STEP 2: Obtaining Criteria for Adjusted Weights Minimum \rightarrow 6.5 Maximum \rightarrow 207.1 | CRITERIA | MADRID | THE HAGUE | LYON | BUDAPEST | 0SL0 | PORTO | |--|--------|-----------|-------|----------|-------|-------| | Job Creation | 207.1 | 41.4 | 124.3 | 82.8 | 82.8 | 124.2 | | Quality of the Jobs | 175.7 | 58.6 | 117.2 | 117.2 | 58.6 | 117.1 | | Neighbourhood Quality of Life | 146.5 | 29.3 | 29.3 | 146.5 | 87.9 | 58.6 | | Energy consumption | 206.9 | 124.1 | 206.8 | 165.5 | 41.4 | 206.8 | | GHG emissions | 78.2 | 78.2 | 78.2 | 78.2 | 78.2 | 78.2 | | N0x emissions | 52.1 | 130.3 | 52.1 | 104.2 | 78.2 | 104.2 | | PM emissions | 52.1 | 26.1 | 78.2 | 78.2 | 26.1 | 52.2 | | Noise pollution | 6.5 | 39.1 | 26.0 | 39.1 | 39.1 | 19.5 | | Average delivery cost of the business model | 115.8 | 86.8 | 144.8 | 173.7 | 144.8 | 144.7 | | Congestion | 15.3 | 38.3 | 46.0 | 38.3 | 23.0 | 15.3 | | Urban storage & parking space | 34.1 | 27.3 | 20.5 | 27.3 | 41.0 | 41.0 | | Financial Internal Rate of Return (FIRR) | 48.7 | 24.3 | 48.7 | 36.5 | 24.3 | 36.5 | | Shop retail benefits | 73.0 | 48.7 | 48.7 | 12.2 | 36.5 | 48.7 | | Delivery time | 38.7 | 38.7 | 38.7 | 38.7 | 51.6 | 51.6 | | Delivery reliability within the time windows | 77.3 | 96.6 | 77.3 | 96.6 | 77.3 | 58.0 | # STEP 3: Quantifying the sustainability performance of the scenarios #### QUANTIFYING KPIs KPI Change (CH) Change compared with the base Scenario $$CH = \left(\frac{C - \boldsymbol{C}_0}{\boldsymbol{C}_0}\right)$$ **Data Sources** - Living Labs Digital Twins - Logistic Operator Data - Survey base #### SUSTAINABILITY PERFORMANCE (SP) $$SP = \sum (CH * AW * ES)$$ #### Ranking From more Sustainability Performance to Less Sustainability Performance # SUSTAINABLE PERFORMANCE | LIVING LAB | SCENARIO | SUSTAINABLE
PERFORMANCE
RATING | |-------------------|---|--------------------------------------| | | B2C: BAU with E-van | 433.736 | | NA .1 * .1 | B2C: Hybrid van + UCC + E-scooter | 492.029 | | Madrid | B2C: E-van + UCC + E-scooter | 529.382 | | | B2C: Big E-van + UCC + E-scooter | 555.566 | | | B2C: Crowdshipping | 258.156 | | The Hague | B2C: Parcel Lockers | 151.855 | | | B2C: Parcel Lockers (bikes) + Crowdshipping | 352.536 | | | B2C: 3 UCCs + cargo-bikes today's demand of parcels | 85.758 | | Lyon | B2C: BAU with 2030 demand of parcels | 112.792 | | | B2C: UCC scenario with 2030 demand of parcels B2C | 168.051 | | | B2B: Minihub (LNG vehicle) + permanent warehouse 24h/day | 616.441 | | Budapest | B2B: Minihub (e-vehicle 16t) + continuous warehouse (7 am to 12 pm) | 633.230 | | Duuapesi | B2B: Minihub (LNG vehicle) + 24h transshipment point | 619.173 | | | B2B: Minihub (e-van) + transhipment point (7 am to 12 pm) | 635.962 | | | B2C: E-vans | 248.421 | | Oslo | B2C: E-vans + microhub | 259.305 | | | B2C: E-vans + microhub + Crodwshipper | 289.884 | | | B2B: 25% e-vehicles | 114.133 | | Porto | B2B: 50% e-vehicles | 186.284 | | | B2B: 75% e-vehicles | 288.808 | #### CONCLUSIONS - All the solutions of the living labs improve sustainability - The results vary quite a lot depending on the context - Discussing with stakeholders helps acquiring knowledge about LML solutions - Digital Twins for synchronous last-mile are helpful to provide KPIs - Policymakers can STAR to prioritize LML solutions José Manuel Vassallo josemanuel.vassallo @upm.es This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861598. LEAD is a project under the CIVITAS Initiative. Read more - civitas.eu