Urban Logistics Innovation Day

26 September 2023, Brussels

Alliance for Logistics Innovation through Collaboration in Europe

#LEADFinalConference #UrbanLogisticsInnovationDay

Living Labs as innovation accelerators for logistics

Carolina Ciprés
Director of Research, Zaragoza Logistics Center

LEAD Strategies

Innovative business models

with a view to optimising the performance of last mile logistics (based on volatility of demand, delivery life cycles and costs) in response to the challenges posed by the on demand economy

2

Agile freight storage and distribution

Agile schemes for urban freight storage and last mile distribution, including crowdsourced shipping, capacity sharing, multiechelon and Physical Internet inspired approaches

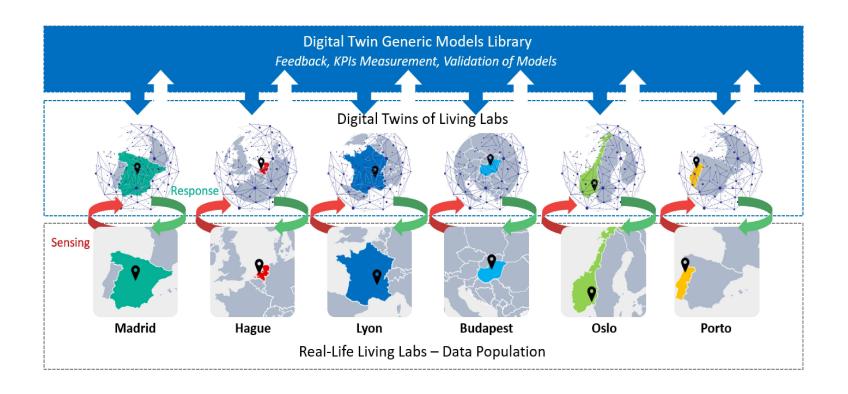
3

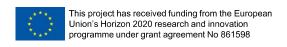
Low emission delivery vehicles

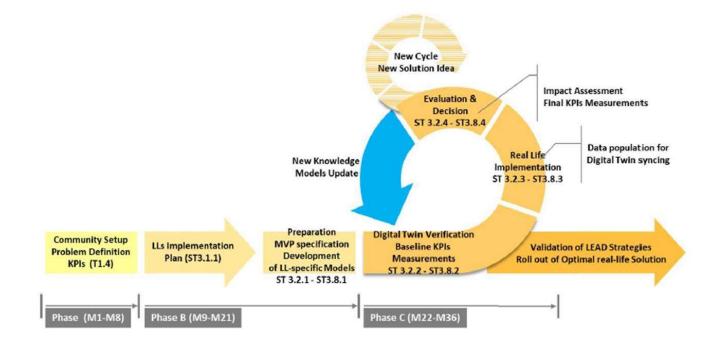
including Electric Delivery
Vehicles (EDVs), hybrid and
automated vehicles for
freight delivery like cargobikes, delivery robots and
droids -walkers will also be
considered

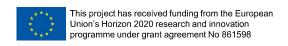
4

Smart datadriven logistics solutions

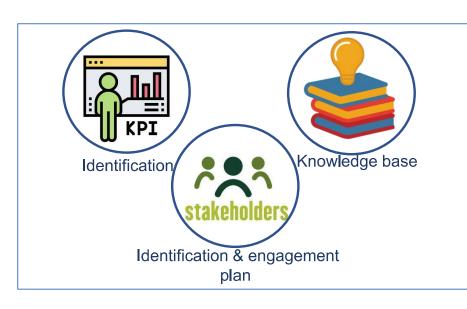

for shared, connected and low-emission logistics operations, empowered by an adaptive modelling approach and Digital Twin models, applied in real-life environments







Living Labs phases



Phase A: Community Setup

First KPIs, stakeholders & Knowledge base Workshop Design & Organisation

Workshop Implementation & results analysis

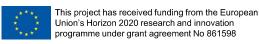
Phase A

Local Workshop

Value case methodology (Multi stakeholders, Multivalue)

- a) Scenarios definition
- b) KPIs definition

Objective


Communities of practice setup

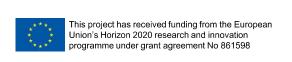
Innovation Agenda

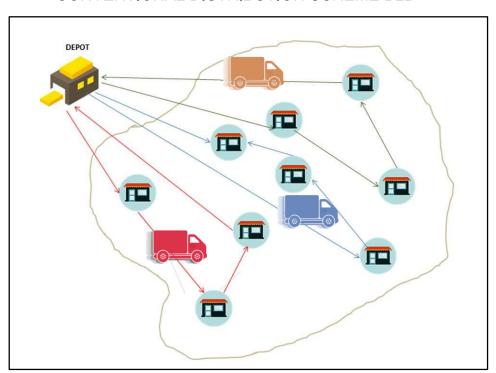
Value case scenarios

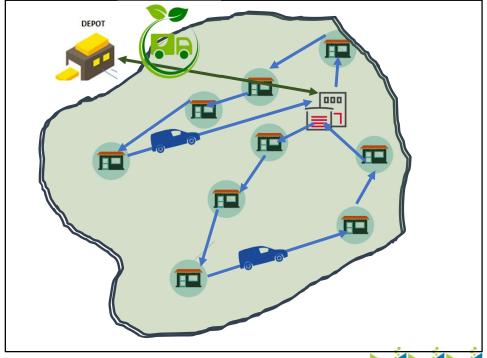
Validation KPIS

Phase B: Living Labs implementation

Integrated last-mile logistics with demand-supply matching platforms


Validation of last mile distribution models





LEAD Innovations: Agile storage + Low Emissions Vehicles

CONVENTIONAL DISTRIBUTION SCHEME B2B

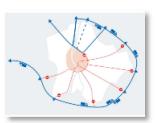
INNOVATIVE DISTRIBUTION SCHEME B2B

LEAD Innovations: Agile storage + Low Emissions Vehicles

Madrid

- 1 UC
- B₂C
- Parcels
- PPP
- 2-echelon
- **UCC: Underground Parking Plaza** Mayor (EMT)
- UC1: Crossdocking facility using hybrid Vans + e-3 Wheelers (CityLogin)
- Route optimization engine
- Digital twin (5 scenarios combining different types of vehicles)

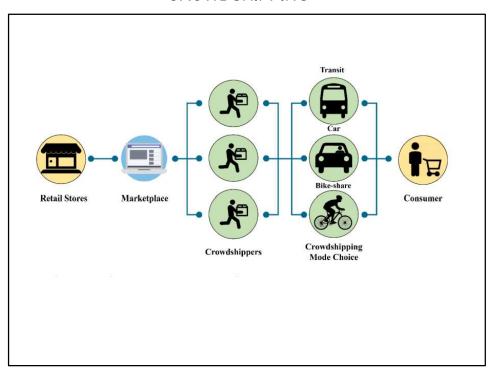
Lyon

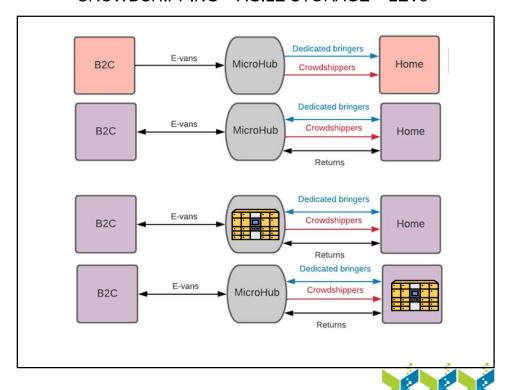

- 2 separate UCs
- **B2C B2B**
- Parcels Used cartridges/paper
- PPP Horizontal Collaboration
- 2-echelon
- UCC: Underground Parking Lyon Confluence (LPA)
- UC1: Crossdocking facility (UPS)
- UC2: lockers for storing used materials and reduce daily trips (Rexel and Suez)
- Digital Twin (simulation of different locations for the UCC and vehicles)

Lyon Confluence

Budapest

- 4 UCs (combined settings)
- B2B (grocery)
- 2-echelon
- Mobile vs fixed + (LEVs)
- 24h vs (7.00 12.00)am
- UCC: Virtual location in the Grand Boulevard
- UC1&UC2: Fixed facility (BILK)
 - UC1:24h, LNG trucks + e-Vans
 - UC2:7-12am, e-16tons + e-Vans
- UC3&UC4: UCC in BILK + mobile depot
 - UC3:24h. LNG trucks + e-Vans
 - UC4: 7-12am. e-16tons + e-Vans
 - Digital Twin (4 use cases simulation)





ZLC MIT GLOBAL SCALE NETWORK Crowdshipping + Agile storage + LEVs

CROWDSHIPPING

CROWDSHIPPING + AGILE STORAGE + LEVs

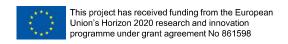
Source: (Agnivesh,P.)

The Hague

- 3 evolutionary UCs
- Parcels
- Horizontal
- Crowdshipping + (lockers)
- Hyperconnected logistics
- UC1: potential of crowdshipping (NIMBER)
- UC2: lockers (MyPup in TU-Delft)
- UC3: integrated services (crowdshipping lockers as transhipment centers)
- Digital twin (scenarios simulation)

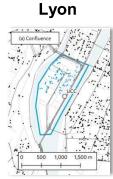
Oslo

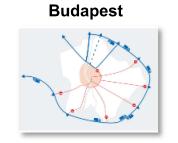
- 4 evolutionary UCs
- B₂C
- **Furniture**
- PPP Horizontal Collaboration
- EVs Crowdshipping microhub returns
- UC1: Direct home deliveries (e-Vans)
- UC2: Microhub (e-vans + bringers)
- UC3: Microhub (e-vans + [bringers and crowdshippers])
- UC4: Microhub (e-vans + [bringers and crowdshippers and returns])
- Digital Twin (scenarios simulation)

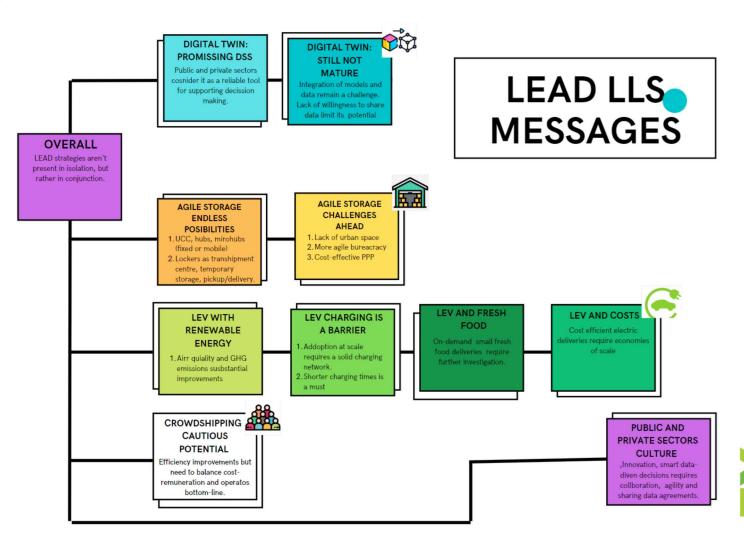

LEAD Innovations: Retail electric deliveries

Porto

- 2 virtual Ucs + 1 real UC
- B2C
- FMCG
- 100% electric deliveries
- Physical Internet
- UC1: electric charging station networks (virtual)
- UC2: electric food deliveries (virtual) new BM
- UC3: re-scheduling (real and virtual) new BM
 - Electric modest or problematic same day deliveries with motorbikes
- Digital Twin (scenarios simulation)




Phase C: Validation


	Social awarene		of kilometres, vehic	cles, energy cons	umed, energy pric	e)
KPIs	Environmental	Environmental	Environmental –	Environmental	Environmental	F

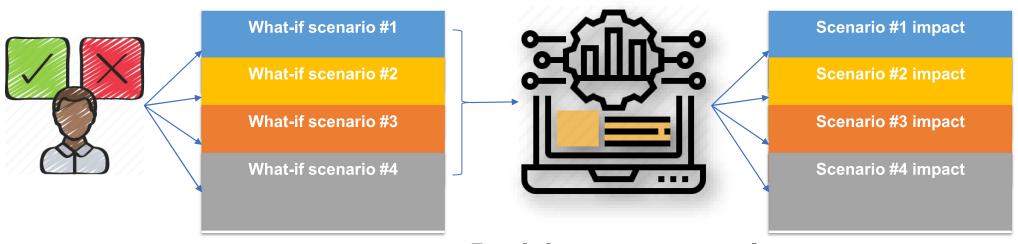
	Opportunities to	r innovation and c	collaboration			
KPIs	Environmental and economic improvements	Environmental and economic improvements	Environmental – economic not possible to determine	Environmental	Environmental and economic improvements	Environmental and economic improvements
Validation	High satisfaction This project has received funding from the	Strong acceptance and lockers as transhipment centres	Strong acceptance despite the challenges	High satisfaction	High satisfaction and acceptance from logistics industry	Strong acceptance but with refinements

Phase C: Validation

Thanks!

Carolina Ciprés
ZLC Director of Research
ccipres@zlc.edu.es

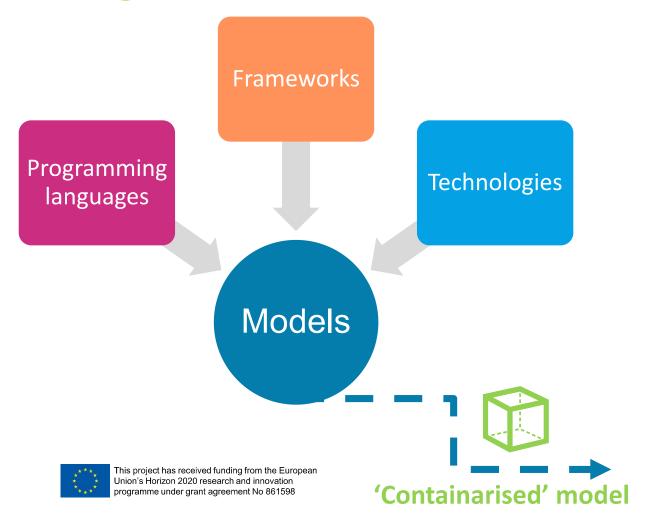
The LEAD Digital Twinning Platform


Urban Logistics Innovation Day, 26 September 2023

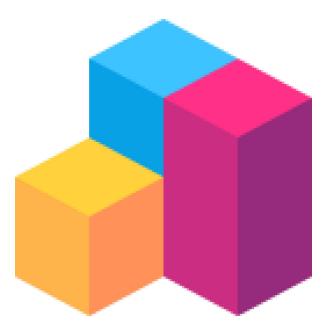
Ioanna Fergadiotou, INLECOM

Impact assessment tool

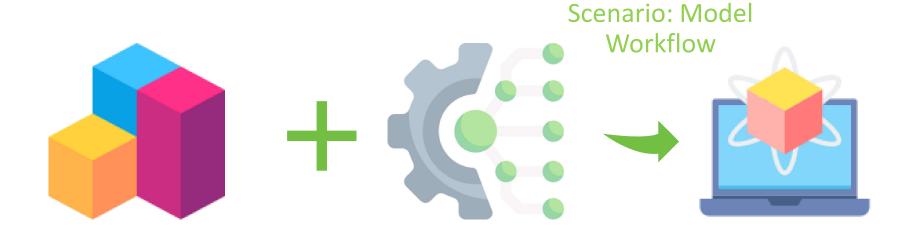
Decision makers


Decision support tool

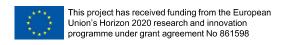
What-if scenarios (based on interventions)


Ex-ante Impact assessment

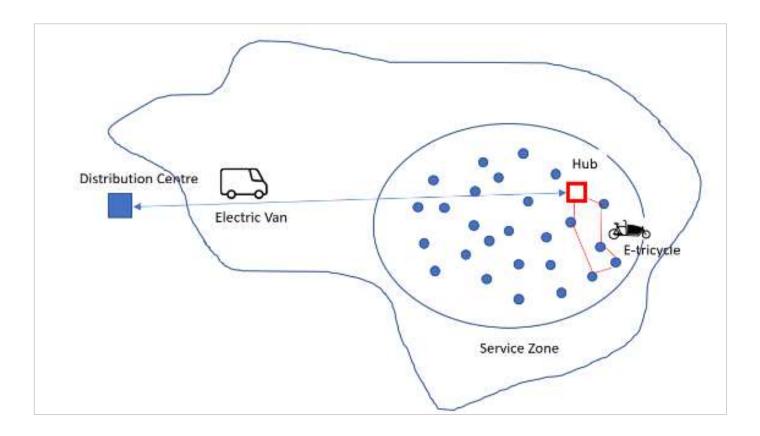
Digital twin models



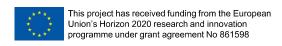
LEAD Model Library

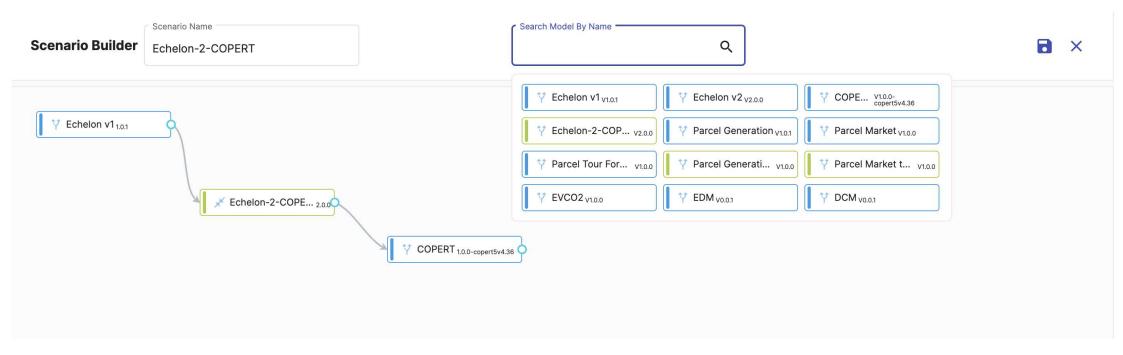

The LEAD Platform

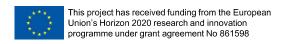
Model Library


Data Assets

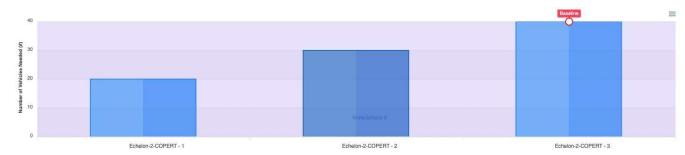
Simulations


Example – Distribution in a service zone


Models (I/O)


	2-Echelon	COPERT
Inputs	 Facilities locations, Fleet characteristics, demand, Zones and map data, Handling times, Required stop times at facilities 	 Temperature, Humidity, Traffic estimates, vehicles types used, Activity per vehicle type, Number of vehicles
Outputs	 Number of vehicles required, Distance and Travel time required to cover demand in the as-is and to-be scenarios 	 Total energy consumption and Estimated air pollution metrics (CO2, PM2.5, NO2, VOC).

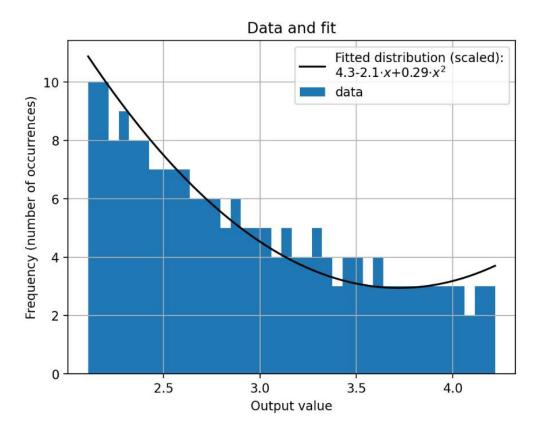
Scenario Builder

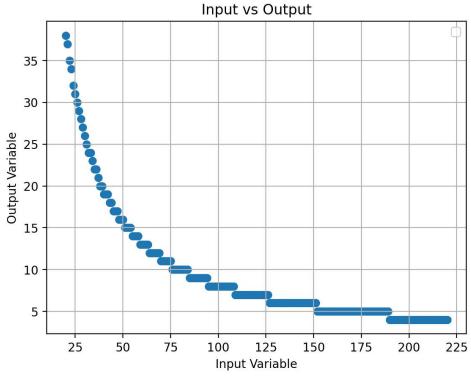




Simulation Results

Number of Vehicles Needed #


Total Delivery Distance (km)



Carbon Dioxide (CO2) Total (ppm)

DSS Cognitive Engine

Key Advantages

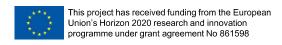
Open Platform standardizing the execution of complex model workflows

Integrates models that have been developed in 3rd party tools

Scalability

Flexibility and resources sharing

Contact us!


Ioanna Fergadiotou

ioanna.fergadiotou@inlecomsystems.com

• Website: https://www.leadproject.eu/

• LinkedIn: <u>lead-h2020</u>

SCLEP

Sustainable City Logistics Evaluation Platform

A Key Exploitable Result by the Madrid Living Lab in the Project

Urban Logistics Innovation Day Brussels, September 26th, 2023

Madrid Living Lab Objective

Demonstrate the **better efficiencies** in using a UCC connected to the TEN-T, to deliver to the city center

Partners

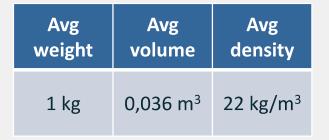
Business-as-Usual (BaU) scenario

- One-echelon routing
- O Direct delivery from a periurban DC located at 25 km from city center

Engine type	Payload	Max nº parcels		
Euro6Cl	878 kg	161		

Urban Consolidation Center (UCC) scenario

- **▼** Two-echelon routing
- Consolidated delivery to the UCC from a periurban DC located at 25 km from city center
- ♥ Final delivery with E-scooters



Engine type	Payload	Max nº parcels		
Electric	250 kg	34		

Parcel and Journey Standards

Workday start	Workday end	Break	
09:00	17:30	30 min	

Service Time per Delivery Standards

Nº of deliveries	Average Service time (min)
< 300	5
> 300	4

In high-density delivery areas, service time comprises 65% to 80% of the driver's journey

SCLEP output

Simultaneous evaluation of <u>multiple</u> urban delivery scenarios & vehicle types

- **☑** Taking current scenario & vehicle type as baseline
- The Enabling cost-efficient, risk-free decision making

May 2023 (7.125 deliveries) Urban Consolidation Centre vs. Business-as-Usual

Scenario	Vehicle types	Total journey (hours)	Driving time (hours)	Serve time (hours)	Km driven	Nº of vehicles	Energy per delivery (kWh)	CO ₂ per delivery (grams)	PM _{2.5} per delivery (grams)	NO ₂ per delivery (grams)
D. 11	Diesel van	1.151	293	792	10.980	148	1.39	372.86	0.04	0.46
BaU	E-van	-	-	-	-	-	-96%	-100%	-100%	-100%
UCC	Hybrid van + E-scooter	-23%	-8 %	-28%	-22%	14%	-81%	-84%	-75%	-100%
	E-van + E-scooter	-23%	-8%	-28%	-22%	14%	-95%	-100%	-100%	-100%
	Big E-van + E-scooter	-25%	-14%	-28%	-33%	1%	-95%	-100%	-100%	-100%

IPR background

- Last Mile Digital Platform, by Last Mile Team
 - Route Modelling, Optimization & Scheduling. Input to UPM's Noise model
- O COPERT, by EMISIA
 - A European emission inventory model
 - Internal Combustion vehicles emissions and energy consumption calculation
- REData Open API, by the Spanish Electrical Network Operator
 - Retrieval of daily electrical energy production by generation technology
 - Electric vehicles CO2-equivalent emissions calculation

IPR foreground

- Specifications and Workflow designs
- Discrete software components
- ✓ Infrastructure-as-Code
- Demonstrator operated from the command line

Current status

TRL-6

Working days	Services	km driven		
460	96,000	138,000		

Published in Horizon Results Platform

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/horizon-results-platform/62650

Beneficiary of Horizon Results Booster services

Seeking

City or Corporate investors

To accelerate SCLEP towards a profitable commercial reality impacting the EU and beyond

Want to know more?

Contact Us

LEAD Communication Management

Claudia Ribeiro | CRibeiro@polisnetwork.eu

Raffaele Vergnani | Rvergnani@polisnetwork.eu

Website: https://www.leadproject.eu/ | LinkedIn: lead-h2020

