COLLABORATIVE INNOVATION DAY 4th October 2022 | Virtual Event

5G-Loginnov Project

Ralf Willenbrock, **Product and Portfolio Manager T-Systems International GmbH**

ORGANIZED BY:

Co-funded by the European Union

CONTENTS

- 1. 5G Loginnov
- **2.** TAVF + Kattwyk
- 3. GLOSA & Collision Alert
- 4. CO2 Impact Assessment

LOGINNOV

Connected Logistics and Mobile Communication

5G LOGINNOV –

Use cases in living labs

UC8/9: 5G-LOGINNOV Floating Truck and **Emission Data (FTED)**

UC10: 5G-LOGINNOV 5G GLOSA and Automated Truck Platooning (GTP) under **5G-LOGINNOV** Green initiative

UC11: 5G-LOGINNOV dynamic control **loop** for environment sensitive traffic management actions (DCET)

UC3: Optimal selection of yard trucks

- Installation of a 5G access point on yard trucks
- 5G latency, precise localization services, etc.

UC4: surveillance cameras / video analytics

- Installation of connected 4K surveillance cameras
- AI/ML solution for container seal presence, human presence detection, social distancing etc.

UC7: Predictive Maintenance

- 5G access point installed on yard vehicles
- AP will collect and forward in real time with low latency telemetry data over the 5G network

UC1: port control, logistics and remote automation

UC2: business critical and mission critical communications

5G LOGINNOV –

Use cases in living labs

ov alice

Alliance for Logistics Innovation through Collaboration in Europe

Co-funded by the European Union

5G enabled Automation

- a) Inside the port (yard logistics)
- b) Outside the port (Hinterland connection)

5G ASPECTS COVERED IN 5G-LOGINNOV

Logistics Innovation through Collaboration in Europe

5G enabled Precise Positioning, MEC

Real-time tracking & enhanced visibility

Requirements for Vehicles platooning: <25ms cellular V2X /V2V

Trends of Next Releases R16, R17 and beyond **Covering all the Gs**

Alliance fo Logistics Innovation hrough Collaboration

Co-funded by the European Union

1900

(uRLCC) Edge Computing & Collission Alerts

LL Hamburg => TAVF & Kattwyk

SGLOGINNOV alice

Alliance for Logistics Innovation through Collaboration in Europe

Co-funded by the European Union

Welcome to TAVF, the test track for automated and connected driving in Hamburg

sgloginnov ali

Alliance for Logistics Innovation through Collaboration in Europe

RSU: Roadside Unit **12N**: Infrastructure to Network **CAM:** Cooperative Awareness Message **DENM:** Decentralized Environmental Notification Message **SPAT**: Signal Phase and Time J2735)

Trucks (ATP)

12

Logistics Innovation through Collaboration in Europe

About Low Tech and High Tec Telematics

2

Use Cases planned for Living Lab Hamburg

Logistics Innovation through Collaboration in Europe

Co-funded by the European Union

Vehicle platooning in TAVF

Urban Platooning and Collision Alerts (uRLLC)

ETA: estimated time of arrival / Z: threshold trigger to stop Truck Platoon

Communication scenario		Payload (Bytes)	Tx rate (messages per second)	E2E latency (ms)	Reliability (%)	Data rate (Mbps)	Min range (m)
Scenario	Degree						
Cooperative driving for vehicle platooning	Lowest degree of automation	300-400	30	25	90		
Information exchange between a group of UEs supporting V2X application.	Low degree of automation	6500	50	20			350
	Highest degree of automation	50-1200	30	10	99.99		80

Alliance for Logistics Innovation through Collaboration in Europe

Co-funded by the European Union

Telematics Big Data Fusion and Network Slicing

Logistics Innovation through Collaboration

CO₂ Impact

V2X allows TLF and **Carbon Footprint Monitoring**

TAVF-Projektpartner

LSBG Landesbetrieb Straßen, Brücken und Gewässer Hamburg

Behörde für Verkehr Hamburg und Mobilitätswende

MOBILITY

Hamburg Verkehrsanlagen

Hamburg Port A

LOGINNOV AICE

First platooning tests based on ISO-23795-1

Distance 5.83 Km

Time [h:m] / Distance [km]

Co-funded by the European Union

Green4TransPORT: Das Projekt

Vorteile

- > Verkehrsfluss verbessern: Weniger Stop + Go
- > Kraftstoffverbrauch + Schadstoffausstoß reduzieren
- Wenn gewünscht: Nennung als Projekt-Testpartner (G4T ist ein Ankerprojekt des ITS Weltkongress 2021)

Zielsetzung

- Proof of Concept: Pilotprojekt zur Erprobung der V2X Anwendungen
- Evaluation:
- Einfluss auf Verkehrsfluss und Schadstoffausstoß

Funktionalität für Testteilnehmer

> Verlängerung der Ampel-Grünphase erhalter

HPA 🌡

Мар	Speed Profile	Altitude Profile	Emission Profile	Way Profil	Info
1	2	3	4		5
		Distance [k	m]		

CO2 impact assessment based on ISO-23795-1 **Potential Carbon Credits for future Emission Trading**

Vehicle	Group name	Start time	End time
RG Logi Jeep copy	Loginnov.	11.04.2022, 08:10	11.04.2022, 08:13
Route	Traffic \clubsuit	Driving Behaviour $\bigstar \bigstar \bigstar \bigstar$	
Duration	Distance	Speed	Fuel Consumption
0:03:07	5,3 km	101,3 km/h	4,5 I/100km
CO2 Emission	Zero fuel distance	Standstill time	ACC Cycle
0,6 kg	897 m	0:00:00	69,6 %
Aero Cycle	Percentage Standstill Cycle	Percentage Work Cyle	Energy Performance Index (EPI)
89,4 %	0 %	76,3 %	2,8 I/100km*t
Acceleration Performance Index (API)	AccWork	AeroWork	Standstill work
2,9 kWh/100km*t	0,5 MJ	1,3 MJ	0 MJ
RollWork 0,7 MJ	GradeWork -0,1 MJ		
Cross section area	Efficiency	Fuel emissions factor	Fuel value
2.35 m ²	30 %	2.664 kg/l	35.712 MJ/I
Mass	Rollfriction coefficient	Standstill fuel consumption	Motorheating
1600 kg	0.015	0.5 l/h	
Airconditioning	Start-Stop automatic		

End	time	
11.0	4.2022,	08:13

GET IN TOUCH

Mr Ralf Willenbrock Product & Portfolio Manager **T-Systems International GmbH**

Email: ralf.willenbrock@t-systems.com Mobile: +49 160 5365453

