DECARBONIZING ROAD FREIGHT TRANSPORT

VEHICLES AND INFRASTRUCTURE AVAILABILITY

ALICE

Webinar

DECARBONISING ROAD TRANSPORT

DECARBONISING ROAD TRANSPORT

THREE KEYS TO Commitment to climate-neutrality by 2050 at the latest **ZERO-EMISSION** By 2040 all new commercial vehicles sold will have to be fossil-free FUNCTIONAL. **RELIABLE AND ROAD TRANSPORT** EFFICIENT VEHICLES **CARBON-NEUTRAL** Clean electricity, hydrogen and low-/zero-carbon fuels are ROAD crucial for the transition TRANSPORT Vehicle deployment will only be successful if infrastructure POLICY TRUCK FRAMEWORK is rolled out rapidly CHARGING AND TO ENABLE REFUELING Commitment of all stakeholders/ AND DRIVE **INFRASTRUCTURE** policy makers must match ambition TRANSITION level set for vehicle industry Manufacturers ready to support roll-out by collaborating with public and private stakeholders

Zero-emission vehicles will have to become **best option and preferred choice of transport operators**

Enabling **policy framework** is indispensable **to shift key cost factors**

In line with science, an **ambitious carbon price**, which gradually increases to significantly higher levels than today is crucial to drive the deployment of zero-emission technologies

Decarbonisation requires clear focus and all resources to be devoted exclusively to reaching target as soon as possible

100% FOSSIL-FREE BY 2040

VEHICLES WILL NOT BE THE BOTTLENECK

				Zero and low-emission heavy-duty vehicles (trucks)								
Name		GVW (t)	GTW (t)*	Application	Range (km)**	Availability						
lveco												
Nikola Tre	BEV	40t		General Haulage	up to 550	2022						
Nikola Tre	FCEV	40t		General Haulage	>800	2023						
DAF												
LF Electric	BEV	19t.		Urban/National distribution	240-270km	Series production						
CF Electric	BEV	20t	37t	Urban/National distribution	200-230km	Series production						
CF Electric	BEV	29t	37t	Urban/ National distribution 200-230km		Series production						
CF Hybrid	HEV	20t	40t	National distribution	50km electric	Field trial						
XF Hydrogen	ICE H2	20t	44t	National distribution/ long-haul	600-800km	prototype						
Daimler Truck												
eCanter	BEV	7.49t		Urban delivery	100 km	Series production since 2017						
eActros 300	BEV	19t - 27t	40t	Regional delivery	300 km	Series production since 2021						
eActros 400	BEV	27t		Regional delivery	400 km	Series production since 2021						
eEconic 300	BEV	27t		Municipality / urban delivery	100 - 150 km	2022						
eActros LongHaul	BEV		40t	Regional delivery/long haul	500 km	Series announced for 2024						
GenH2	FCEV		40t	Long haul		Prototypes						
GenH2	FCEV		40t	Long haul	up to 1,000 km	Series announced for 2027						
MAN												
etgm	BEV	26		Distribution	up to 180 km	Short Series						
etruck	BEV	tod.	tbd.	Distribution	tod	Series Production announced for 2024						
Baxeroflotte	FCEV	tbd.	tbd.	Long Haul	tod	Customer demo fleet 2024						
Scania												
	HEV		36	Long haul / distribution	15	Series Production						
	PHEV		36	Distribution	60	Series Production						
25L or 25P	BEV	19		Distribution	100	Series Production						
25L or 25P	BEV		29	Distribution	250	Series Production						
R- or S-	BEV	29	64	Regional	gional Up to 420							
	BEV	29	64	Distribution/ Regional/ Long haul/ Construction	Up to 490	Series production 2024						
Volvo Trucks												
FH Electric	BEV		44	Regional	300	Sales start 2021						
FM Electric	BEV		44	Regional	380	Sales start 2021						

Zero and low-emission heavy-duty vehicles (buses and coaches)								
Name		GVW (t)	Application	Range (km)*	Availability			
lveco								
EWAY	BEV	20/30 t	City bus		Series production			
CREALIS	Trolleybus	30 t	City bus BRT	unlimited	Series production			
CROSSWAY LE	BEV	20 t	City bus		2023			
CROSSWAY LE	BEV	20 t	Intercity bus		2023			
Daimler Truck								
eCitaro Solo	BEV	20t	City Bus	200 - 320	Series production			
eCitaro Artic.	BEV	20t	City Bus	180 - 220	Series production			
eO500U	BEV		City Bus	up to 250	announced 2022			
MAN								
Lion's City 12 E	BEV		City Bus	up to 350 km	Series Production			
Lion's City 18 E	BEV		City Bus	up to 350 km	Series Production			
Lion's City 12 E	BEV		City Bus	up to 350 km	Series Production			
Scania								
Citywide	HEV	20t	City Bus		Series Production			
Citywide	BEV		City Bus	250	Series Production			
Volvo Trucks								
7900 Electric	BEV	19,5	City bus					
7900 Electric Articulated	BEV	30	City bus					
7900 S-Charge	HEV	19	City bus					
7901 S-Charge Articulated	HEV	29	City bus					
BZL Electric	BEV	19,5						
* Currently, there is no offic	cial methodolo	gy how the	e range of altern	atively powered	vehicles should			

be determined. Figures are based on the manufacturers' individual assessment.

https://www.acea.auto/files/ACEA-position-paper-2022 HDV-CO2-Review.pdf

REVIEW OF HDV CO2 STANDARDS ACEA POSITION

- Vehicles will not be the bottleneck
- Set fixed ambition level for 2030 now
- Set targets for 2035 and 2040 now
 - But review them again in view of enabling conditions
- No interim target before 2030
- No 100%-target or ICE phase-out for all vehicle groups at this point in time
- Put strong incentives schemes for zero-emission vehicles in place
- Improve and extend credit/ debit system beyond 2030
- Additional vehicle groups can be included if...
- CO2 certification framework is in place and individual baselines are established
 www.acea.auto

DECARBONISATION OF ROAD TRANSPORT

ICE AND THE ROLE OF RENEWABLE FUELS

- Going fossil-free requires more than "just" the electrification of vehicles
 - Close cooperation between all stakeholders needed to enable fossil-free transportation and infrastructure industry
- ICE will continue to play an important, long-term role despite focus on zeroemission technologies
 - Decarbonisation of all energy carriers is a crucial cornerstone
 - Transition of the transport sector will take time
 - Emission reductions from vehicle stock will needed
 - If powered by fossil-free fuels, ICE will have a future in heavy-duty trucking until 2040 and beyond
- Renewable fuels will have to play a (rapidly) increasing role in road transport
- Current regulatory framework is insufficient to ensure widespread availability in necessary quantities

HDV CHARGING INFRASTRUCTURE

HDV INFRASTRUCTURE REQUIREMENTS

Specifications are distinctly different for trucks

- Particularly with respect to:
 - Locations of charging and refuelling stations
 - Space requirements
 - Minimum power output levels
 - Others

HDV CHARGING INFRASTRUCTURE

ELECTRIC CHARGING INFRASTRUCTURE

	COMMISSION	OMMISSION PROPOSAL		NEEDED IN REALITY				
TEN-T core network	31 Dec 2025	31 Dec 2030	31 Dec 2035	1 July 2025	1 July 2027	1 July 2030	1 July 2035	
Power output per recharging pool	≥1,400kW	≥3,500kW		≥5,000kW		≥6,500kW		
Number/power of recharging stations	1 x 350kW	2 x 350kW		4 x 350kW 4 x 800kW		4 x 1,200kW		
TEN-T comprehensive network	31 Dec 2025	31 Dec 2030	31 Dec 2035	1 July 2025	1 July 2027	1 July 2030	1 July 2035	
Power output per recharging pool		≥1,400kW	≥3,500kW		≥1,400kW	≥3,000kW	≥5,000k	
Number/power of recharging stations		1 x 350kW	2 x 350kW		2 x 350kW	2 x 800kW	2 x 1,200kW	
Safe and secure parking areas	31 Dec 2025	31 Dec 2030	31 Dec 2035	1 July 2025	1 July 2027	1 July 2030	1 July 2035	
		1 x 100kW		4 x 100kW				
Urban nodes	31 Dec 2025	31 Dec 2030	31 Dec 2035	1 July 2025	1 July 2027	1 July 2030	1 July 2035	
Aggregated power output	≥600kW	≥1,200kW				≥1,600kW		
Individual power output	≥150kW	≥150kW				All ≥150kW + 2 x 350kW		

TRUCK STOP LOCATIONS (JUNE 2021)

- High power fast charging network needed
- Objectives
 - Analyse truck stop locations and
 - Identify locations where shared charging infrastructure could be located
- Input data
 - 750,000 locations of 400,000 trucks in operation over a period of 12 months
 - Clustered to 30,000 long-haul and 4,000 regional locations

Electric trucks: new study pinpoints precise locations for charging infrastructure across EU

Source: ACEA 2021, https://www.acea.auto/press-release/electric-trucks-new-study-pinpoints-precise-locations_for-charging-infrastructure-across-eu/

WHERE TO START ?

- Do not expect behavioural changes
 - Truck operators will want to recharge where they usually stop today
 - But other factors (eg grid capacity) must also be considered
- Focus on most utilised locations
 - Aim for top 10% locations in operation by 2027 (~3.000 locations ≈ 50% of all stops)
 - Minimum network must be fully operational no later than 2030
- Do it right from the start
 - Start with regional locations/ urban nodes (by 2025)
 - But focus on MCS (ready by mid-2024 at the latest)
- Also: Let's not forget about H2
- More details: <u>https://www.acea.auto/press-release/electric-trucks-new-data-maps-out-priority-locations-for-charging-points/</u>

AFIR: TRUCK-SUITABLE INFRASTRUCTURE TOP 1% LOCATIONS – NETHERLANDS (2022)

<u>TOP 1%</u>

- 11 locations
- Approx. 843 stops/ day
- Representing ~20% of all truck stops/ day

AFIR: TRUCK-SUITABLE INFRASTRUCTURE TOP 5% LOCATIONS – NETHERLANDS (2022)

<u>TOP 5%</u>

- 51 locations
- 1.749 stops/ day
- 2 locations with >50% short stops (less than 1h)

AFIR: TRUCK-SUITABLE INFRASTRUCTURE TOP 10% LOCATIONS – NETHERLANDS (2022)

<u>TOP 10%</u>

- 102 locations
- 2.345 stops/ day
- 4 locations with >50% short stops (less than 1h)
- Representing ~53% of all truck stops/ day

AFIR: TRUCK-SUITABLE INFRASTRUCTURE TOP 50% LOCATIONS – NETHERLANDS (2022)

TOP 1% LOCATIONS – GERMANY (MCS)

<u>TOP 1%</u>

- ~75 locations
- ~4.500 stops/ day
- Representing ~13%
 of all truck stops/ day

TOP 5% LOCATIONS – ITALY (MCS)

<u>TOP 5%</u>

- 169 locations
- 4.300 stops/ day
- 4 locations with >50%
 short stops (less than 1h)

TOP 10% LOCATIONS – AUSTRIA (MCS)

<u>TOP 10%</u>

- 88 locations
- 2.235 stops/ day
- 4 locations with >50% short stops (less than 1h)

CONCLUSIONS

CONCLUSIONS

KEY ENABLING FACTORS

 Decarbonizing road transport requires more than "just" CO2 standards

- 1. Zero-emission vehicles
- 2. Charging and refueling infrastructure
- 3. Cost parity

Coherent policy framework to support transition

REPRESENTING EUROPE'S 15 MAJOR CAR, VAN, TRUCK AND BUS MANUFACTURERS

ACEA

European Automobile Manufacturers' Association +32 2 732 55 50 info@acea.auto

6936

