

alice

Designing a Sustainable Supply Network & The Physical Internet

Sergio Barbarino

P&G

Research Fellow P&G

Alliance for

in Europe

Logistics Innovation through Collaboration

Lifecycle thinking

• Large improvements in some lifecycle stages may be negligible compared to small improvements or negatives in others

America's New Pollution King

Transportation emissions have surpassed electricity emissions for the first time since 1978

Transportation Becomes The Biggest CO2 In The United States

U.S. Energy Information Administration

Bloomberg

Sustainability -> Innovation in Supply Chains

Less everything but performance

1988: Pioneered compaction with Today's dosage 74% less per load

2007: 2X compacted Tide liquid in NA

40% less water, 40% less plastic

2013: Tide Pods

Most compacted detergent ever

Sustainable Suppy Network Design

• Just in Time...

• How to apply it correctly?

Electric Cars...or Small ones?

Tesla Model S P100D	BMW 7 Series 750i xDrive	Mitsubishi Mirage CVT*	
100			
Production emissions (kg CO ₂ e	quivalent)		
12,204	8,190	4,752	
Use emissions - 270,000km (kg	CO ₁ eq)		
48,600	95,310	46,980	
End of life emissions (excluding	battery, kg CO ₂ eq)		
311	351	159	
Lifecycle emissions total - 270,0	DOOkm (kg CO _y eq)		
61,115	103,851	51,891	
Lifecycle emissions per km - Int	ensity (g.CO ₂ eq/km)		
226	385	192	
All data are based on values drives of the LD dataset 710 bases of the LD dataset 710 bases of the LD dataset.	etternin ander fangening		

Conserving Resources: Distribution Optimizing Outbound Transportation

Our strategies for fewer and friendlier miles:

- Flow management
- Operational excellence by optimizing our distribution networks and vehicle fill
- Shifting to intermodal transportation
- Collaboration

Cube Fill Optimising Light & Heavy Goods Mix

Light Goods: Only 25% of weight limit

Heavy Goods: Only 40% of volume limit This is bad for both profitability and environment

Mixed Goods: Target 80% weight & volume

"Cube-Fill" Concept

Container Limit = 87m³ & 24 tonnes Overall efficiency = 80% weight & 80% volume

TUPPERWARE VEHICLE 'FILL' COLLABORATION

Herzegovinz Giron Barcelos O Constantine

>15% less Cost

save > 2M Tons co₂

Vehicle Cube Fill improvement

55% **→** 85%

by heavy & light mixing

Optimize Warehouse

Productivity

Show Industry Leadership

Transformers Demonstrator test results

Hybrid-on-Demand:

3 to 5%

Motorway: 2 to 4% fuel consumption (FC) reduction Urban heavy traffic: 6 to 7%

Aerodynamic features:

approx. 8%

Loading efficiency:

Up to 40%

90 km/h constant speed: Up to 14% drag reduction, Up to approx. 8% FC reduction

1 additional pallet on floor (3%); Double floor: additional floor space; +10 pallets = +30%= +16 minutes

FROM A ONE LEAD TIME MODEL WITH PLANT STOCK

CURRENT SUPPLY CHAIN SET-UP						
PRODUCTION		PERIOD N	PERIOD N+1	PERIOD N+2		
PLANT INVENTORY						
FAST AND AGILE TRANSPORTATION MODE			ţ			

TO A MULTIPLE LEADTIME MODEL WITH PIPELINE STOCK

SYNCHROMODAL SUPPLY CHAIN SET-UP						
TIME		PERIOD N	PERIOD N+1	PERIOD N+2		
PLANT INVENTORY		•	•			
FAST AND AGILE TRANSPORTATION MODE						
FAST AND STABLE TRANSPORTATION MODE						
SLOW AND STABLE TRANSPORTATION MODE	- A BORN					

An inconvenient Truth

• A consumer shopping by car (5km from home) adds to the Product 50% of the CO2 footprint of the transport supply chain till the supermarket shelf....

•Can we fix that?

Conventional shopping trip: g/CO₂ per consumer trip/activity

Direct to Consumer Delivery

Home delivery: g/CO2 per drop/activity:assumes personal travel is undertaken by car

